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Diffusion in biological tissues can be measured by magnetic
esonance diffusion tensor imaging The complex nature of aniso-
ropic diffusion in the brain has been described by a diffusion
ensor which contains information about the magnitude of diffu-
ion in different directions. Each tensor contains a set of three
igenvalues which are related to the major, intermediate, and
inor axes of a diffusion ellipsoid. This investigation demon-

trates that the various sets of diffusion eigenvalues from different
egions of the brain lie along a line in ordered eigenvalue space.
ets of ordered diffusion eigenvalues were considered points in
rdered eigenvalue space. The line which best fit the data by
inimizing the total squared deviations was determined. A new

oordinate system was constructed through translation and rota-
ion which spanned ordered eigenvalue space. Eigenvalues from
oth monkey brain and human brain were studied. It was found
hat the sets of eigenvalues from both species have significant
inear trends. Moreover, the same line may describe the brain
igenvalues from both species. It is likely that this linear relation-
hip of the eigenvalues observed in an ordered eigenvalue plot is
elated to a combination of (1) conservation of total isotropic
iffusion and (2) the degree of orientational dispersion of the
icrofibers within each voxel. © 1999 Academic Press

Key Words: diffusion; brain; diffusion tensor imaging; diffusion
nisotropy.

INTRODUCTION

Diffusion in biological tissues can be measured by magn
esonance diffusion tensor imaging (1–6). Isotropic diffusion
efers to the situation where the diffusivity is the same in
irections in space and can be described by a simple s
uantity. Diffusion in the gray matter of the brain has b

ound to be relatively isotropic. However, in general, br
iffusion is not isotropic. Diffusion which varies with directi

s termed anisotropic. The complex nature of anisotropic
usion has been described by a diffusion tensor which con
nformation about the magnitude of diffusion in different
ections. This information is often depicted as a diffus
llipsoid oriented in space with the major axis in the direc
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f greatest diffusion. The major, intermediate, and minor
re mutually orthogonal.
A set of eigenvalues of a diffusion tensor containsl1, l2, l3.

hese eigenvalues are expressed in square millimeter
econd. They can be ordered by decreasing magnitude almax

l int $ lmin $ 0. The set of ordered eigenvalues can
onsidered a point in a three dimensional space denote
(i ),

l~i ! 5 F lmax~i !
l int~i !
lmin~i !

G , [1]

here i ranges from 1 ton, the total number of sets
igenvalues.
Ordered eigenvalue space is composed of all possible v

f the ordered eigenvalues. This space has the shape
nverted triangular pyramid with the apex at the origin. T
lanes that form the boundaries arelmin 5 0, lmin 5 l int, and
int 5 lmax.
In this investigation it will be demonstrated that the set

igenvalues,l(i ), from regions of brain parenchyma lie alo
line in ordered eigenvalue space. This line will be defined

haracterized by the use of a coordinate system translatio
otation. The new coordinate system is a natural system
escribing the eigenvalues. It allows convenient paramete
escribing position along the line and deviations from the
his new parameterization may prove to be useful for dete
nd characterizing abnormal values of diffusion in tissues

MATERIALS AND METHODS

The Mathematica software package (Wolfram Resea
nc., Champaign, IL) was used on an Apple Quadra comp
Apple Computer Inc., Cupertino, CA) to perform the mat
atics and analyze the data in this manuscript.

verview

The coordinate system described above containingl(i ) will
e referred to as the “original ordered eigenvalue coord
1090-7807/99 $30.00
Copyright © 1999 by Academic Press
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34 MARK M. BAHN
ystem.” A new coordinate system spanning ordered e
alue space will be derived below.
By translocation and rotation of the original coordin

ystem, one of the new axes, thes axis, will be the line which
est describes the linear trend in the valuesl(i) from the brain
arenchyma.

etermination of the Line Which Best Fits thel(i)

The data pointsl(i ) were projected onto a plane in origin
igenvalue space. The variance of the projected points
etermined (the total of the squared distances from the c
f mass). Then, by use of an iterative method, the planP,
hich minimized the variance, was identified.
Let L(s) be the line which is orthogonal toP and which also

asses through the center of mass of the points projected
. Then L(s) best describes the linear trend of the b
arenchymal pointsl(i ).

etermination of the Origin of the New Coordinate Syste

L(s) crosses the boundary of the original ordered eigenv
pace at a pointq, which will be the origin of the new
oordinate system. The point,q, was found to be in the plan
max 5 l int.

ranslation and Rotation of the Coordinate System

Let u1 be the unit vector orthogonal to the planeP. Then the
ine

L~s!5q1u1s [2]

est describes the linear trend inl(i ). u1 is the unit basis vecto
or the news axis.

Two other unit vectors,u2 andu3, can be arbitrarily define
o be orthogonal tou1 and also mutually orthogonal (u2 uses
he Gram–Schmidt orthogonalization process),

u2 5 ~q 2 ~u1 z q!u1!/Norm~q 2 ~u1 z q!u1!, [3]

u3 5 u1 3 u2, [4]

herez denotes the dot or inner product,3 denotes the cros
roduct, and “Norm” is the square root of the sum of squ
lements of the vector. Thet axis was chosen asu2 in Eq. [3]
uch that it was along the line orthogonal toL(s) which

ntersects the origin.
The matrixR21 is defined as

R21 5 @u1 u2 u3#. [5]

Then the 33 3 unitary rotation matrixR (the inverse ofR21)
ransforms the original coordinate system into the new tr
ormed coordinate system
n-

as
ter

nto

e

d

s-

l9~i ! 5 R~l~i ! 2 q!. [6]

The axes in the transformed coordinate system are ref
o asr, s, and t.

l9~i ! 5 F s~i !
t~i !
r~i !

G . [7]

l9(i ) can be written in a cylindrical coordinate system, (s, d,
). d is the distance of a point to thes axis andc is the angle

rom the t axis in ther–t plane.r, s, t, andd are expressed
quare millimeters per second,c in degrees.
The goodness of fit of the line to the data was measure

he coefficient of determination,r 2, with 0 # r 2 # 1 (7). It
quals the sum of the squared distances from the pred
alues to the mean of the data points divided by the sum o
quared distances from the data points to their mean.r 2 is the
raction of the variation in the data points which can
ccounted for by the fitted line.

rain Eigenvalues Used in the Derivation

Mean eigenvalues from regions of interest drawn in var
rain regions are available in the literature. In the pre

nvestigation, eigenvalues from regions of interest in hu
rain (2) and monkey brain (3) were combined and fitted
escribed above. The eight eigenvalues from monkey
arenchyma represent mean values derived from poole
ions of interest in the right and left hemispheres of
nimals. The eight eigenvalues from human brain are sim
erived from eight healthy volunteers. The lines describing

inear relationship between the eigenvalues from each sp
ere fitted separately. The human brain eigenvalue from

rontal cortex was found to deviate significantly from the
tted to the other human brain eigenvalues. Using ther 11

utlier analysis procedure (8) the probability that this point
n outlier exceeds 0.98. Therefore, this point was rejected
se in the analysis. In the original article (2) Pierpaoliet al.
lso considered the frontal cortex point to be an outlier
uggested that it might be due to partial volume contamin
y cerebral spinal fluid.

RESULTS

Table 1 shows highly linear trends withr 2 values near 1 fo
he best line fit to the monkey data (monkey fit–monkey d
nd for the best fit line to the human data (human fit–hu
ata).
Table 1 also shows ther 2 value when the best fitting line

he monkey is applied to the human data (monkey fit–hu
ata), and vice versa. At-test was performed to determi
hether there was significant difference in how each line fi
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35A LINEAR RELATIONSHIP OF DIFFUSION EIGENVALUES
ata sets. The value ofr 2 for human fit–human data w
ompared tor 2 for the monkey fit–human data. Using thet-test
escribed by (9) the values ofr 2 were not significantly differ
nt (p . 95%). In thecomparison of monkey fit–monkey da

o human fit–monkey data it was slightly less likely that
wo values ofr 2 were identical (p . 85%).This is due to th
xtremely good fit of the monkey line to the monkey datar 2

0.99). These results demonstrate that both sets of e
alues are well described by either regression line. There
he eigenvalues from both monkey brain and human brain
ombined. A best fit line for the combined data sets
etermined. This line was found to also have a signifi

inear trend (overall fit–combined data in Table 1).
Based on the combined data set, the rotation matrix

oordinate system transformation is

R 5 F 0.86 20.34 20.38
0.50 0.69 0.52
0.083 20.64 0.77

G . [8]

Figures 1a–c show plots of the original eigenvalue po
nd the best fitting line (thes axis). Inspection of the deviatio
f the points from thes axis demonstrates a small higher or

rend in the residuals. However, the linear transformation
otation used in this investigation cannot incorporate t
igher order terms.
In the original coordinate system, the equation forL(s) is

L~s!5F lmax

l int

lmin

G ~s!5F 734
734
532

G1F 0.86s
20.34s
20.38s

G
3 1026 mm2/s. [9]

Values of the parameters for different brain regions are tab
ated in Table 2. These values are based on the best fit
ombined set of eigenvalues. When listed in ascending ordes,
he anatomic regions are ordered according to expected deg
nisotropy. It is noteworthy that similar anatomic regions f
uman and monkey data (i.e., the corpus callosum) have s
alues of s. The great similarity ins values for brain region
etween species suggests that the method is robust. Diffe
etween individuals within a species are expected to be muc

han those between species.

TABLE 1
r2 Values from Various Line Fits to the Data

Monkey data Human data Combined d

onkey fit 0.99 0.96
uman fit 0.99 0.97
verall fit 0.97
n-
e,
re
s
t

r

s

r
d
e

the
f
e of

lar

ces
ss

DISCUSSION

Many measures have been used to convert the tensor,
escribes complex diffusion in a volume of tissue, into a s
eaningful scalar quantities. Scalar representation of s
ttribute of the tensor is more readily comprehensible tha

ull tensor itself and can be easily displayed as a param
mage. These measures have described diffusion magn
nisotropy, and skewness (1–6, 10). Most of these measur
efine planes or surfaces of isometric values in three di
ional eigenvalue space. Table 1 demonstrates thats can be
onsidered an anisotropy measure because the magnitu
arameters correlates with the expected degree of anisot

n different anatomic regions. However, the present deriva
s much more than just the proposal of another anisot

easure. It is a model of the relationship between brain
nvalues in normal tissue.
If the eigenvalues of the diffusion tensor associated with

maging voxel had magnitudes which were randomly distribu
hen the ordered eigenvalue plot of the eigenvalues from a
oxels would have points distributed throughout the spac
here were a single constraint on the allowable eigenvalues
s constant total isotropic diffusion, then the points in an ord
igenvalue plot would fall on a plane. However, the pre

nvestigation demonstrates that the points in an ordered e
alue plot fall along a line. This suggests that there are at leas
onstraints on the values of the three eigenvalues for each
possible explanation for this observed linear relationship re

he observation to the tissue microstructure. On a micros
evel, brain is composed of fibers with a preferred directio
iffusion along the fiber (rather than across it). Some tissue
omposed of fibers which are highly parallel, such as the co
allosum. Other brain structures, some white matter structure
ost of the gray matter structures, have a more dispersed
ution of microfiber orientations. It is likely that the linear re

ionship of the eigenvalues observed in an ordered eigenvalu
s related to a combination of (1) conservation of total isotr
iffusion and (2) the degree of orientational dispersion of
icrofibers within each voxel, perhaps with similar microsco
iffusion within the region of each individual microfiber. T
arameter s is likely related to the degree of microfiber dispe
ith the voxel. A future direction for research would be
onstruct a mathematical model based on these assumpti
ssess whether it predicts the observed linear eigenvalue re
hip.
The monkey and human brain eigenvalue data sets

ombined because they were derived from the same labo
ith similar methodologies. However, there may have b
ubtle differences in technique between the two studies
ause these two investigations were not necessarily unde
or the purpose of this comparison. Therefore, future stu
ith human subjects, monkeys, and other animals, with ca
ttention to the maintenance of identical procedures, are
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36 MARK M. BAHN
ssary to verify that the diffusion eigenvalues from mult
pecies lie along the same line in ordered eigenvalue sp
Since normal tissues lie alongL(s), deviation ofl(i ) from

he line might denote pathology. Pathology could also
anifested by movement along the line in such a manne

he value of parameters does not correspond to the norm
alue for that anatomic region.

FIG. 1. (a) A plot of the projection of the eigenvalue plots onto thel int–l
uman data set, is also shown. The points from the monkey brain (ope

he combined set of eigenvalues was used when determining the best fit
rojection of the best fit line is also shown. (c) A plot of the projection of
hown.
.

e
at

The model identified the human frontal cortex eigenva
2) as outlier values. The same conclusion was reached
riginal article. The ability to differentiate accurate diffus
igenvalues from outliers strengthens confidence in the m
nd its ability to identify pathology.
If it is verified that the proposed model represents diffu

n normal brain tissue, projecting the diffusion eigenva

plane. The projection of the best fit line, fitted to the combined monkey
quares) and human brain (filled circles) are plotted with different symbugh
line. (b) A plot of the projection of the eigenvalue plots onto thelmin–l int plane. The
eigenvalue plots onto thelmin–lmax plane. The projection of the best fit line is a
max
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37A LINEAR RELATIONSHIP OF DIFFUSION EIGENVALUES
nto the line could be used as a method of reducing mea
ent noise in normal tissues.
The trace of the diffusion tensor is commonly used a
easure of total diffusion. It is equal to three times the ave
f the diffusion tensor eigenvalues,

lmean5 trace/35 ~lmin 1 l int 1 lmax!/3. [10]

By use of the values from Eq. [9],lmean was calculated fo
he values ofs (0–13003 1026 mm2/s in Table 2)) corre
ponding to the published normal tissue eigenvalues.
ndicates that the model line lies nearly parallel to an isom
urface of the parameterlmean. The value oflmeanfor the larges
value in the brain regions tested (s 5 1247) isonly 8% large

han thelmean for the smallests (s 5 59), 6703 1026 mm2/s
ersus 7263 1026 mm2/s. The relatively constantlmean values
gree with published observations (2, 3).
It is of note that the lineL(s) does not pass through a reg

f isotropy (such thatlmin 5 l int 5 lmax). However, it is likely
hat this is due to a bias introduced by sorting the eigenva
ccording to magnitude. Further investigation is necessa
etermine the effect of this sorting bias. The small nonli

rend noted in the residual values of the fitted line is also li
o be related to a bias introduced by ordering the eigenva

As s increases (i.e., as the diffusion ellipsoid becomes m
nisotropic) the value of the ratiolmin/l int increasingly deviate

rom unity. Similarly, the ratiol int/lmax departs from unity ass
ncreases. Thus, the present model seems to suggests t
iffusion ellipsoid in normal brain tissue is not axisymmet
owever, further investigation is needed to verify this s

TABLE 2
Brain Regions and Their Corresponding Parameter s

Region Species Parametes

audate nucleus Human 59
utamen Monkey 130
audate Monkey 143
arietal cortex Monkey 206
entrum semiovale Human 339
ubcortical Wt matter Monkey 346
fibers Human 588

osterior limb IC Human 751
ptic radiation Human 827
nterior limb IC Monkey 844
osterior limb IC Monkey 876
orpus callosum Monkey 1073
plenium CC Human 1131
yramidal tract Human 1143
ptic tract Monkey 1247

Note. IC 5 internal capsule, CC5 corpus callosum, Wt5 white. s has
nits 3 1026 mm2/s.
re-
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ested finding because it could be inaccurate due to
ntroduced by ordering the eigenvalues.

A bias is introduced into the eigenvalues by ordering. T
ias is most severe for nearly isotropic sets of eigenvalue

east severe for very anisotropic sets of eigenvalues. The
tted to the data reflects the presence of this bias. Perh
ess biased estimation of the linear trend can be obtaine
onstructing a line which passes through only two points.
oint is assumed to be exactly isotropic with the eigenva
qual to the averagel int from five gray matter regions (cauda
audate, putamen, frontal cortex, and parietal cortex).
ther point is very anisotropic with coordinates equal to
ean of five white matter tracts (splenium, corpus callos
ptic tract, posterior limb of internal capsule, and pyram

ract). Using these values, an estimate of the “unbiased” li

Lunbiased~s!5F 701
701
701

G1F 0.83s
20.29s
20.47s

G31026 mm2/s.

[11]

CONCLUSIONS

In the present investigation the brain diffusion eigenv
arametersl(i ) from both monkey and human are shown
emonstrate significant linear trends. Moreover, this s
uggests that the linear trend found in both species ca
escribed by the same line. This line describing the linear t

s a model for normal brain diffusion. It can be applied
easurement noise reduction. It can serve as an aniso
easure. It may be useful for the detection of patholog
rain tissues. The observed linear relationship among the

usion eigenvalues in the normal primate brain might be re
o a combination of (1) the constant value observed for
sotropic diffusion throughout the brain, and (2) the degre
ispersion of the orientation of the microstructural elem
ithin each voxel.
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