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A Linear Relationship Exists among Brain Diffusion Eigenvalues
Measured by Diffusion Tensor Magnetic Resonance Imaging
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Diffusion in biological tissues can be measured by magnetic
resonance diffusion tensor imaging The complex nature of aniso-
tropic diffusion in the brain has been described by a diffusion
tensor which contains information about the magnitude of diffu-
sion in different directions. Each tensor contains a set of three
eigenvalues which are related to the major, intermediate, and
minor axes of a diffusion ellipsoid. This investigation demon-
strates that the various sets of diffusion eigenvalues from different
regions of the brain lie along a line in ordered eigenvalue space.
Sets of ordered diffusion eigenvalues were considered points in
ordered eigenvalue space. The line which best fit the data by
minimizing the total squared deviations was determined. A new
coordinate system was constructed through translation and rota-
tion which spanned ordered eigenvalue space. Eigenvalues from
both monkey brain and human brain were studied. It was found
that the sets of eigenvalues from both species have significant
linear trends. Moreover, the same line may describe the brain
eigenvalues from both species. It is likely that this linear relation-
ship of the eigenvalues observed in an ordered eigenvalue plot is
related to a combination of (1) conservation of total isotropic
diffusion and (2) the degree of orientational dispersion of the
microfibers within each voxel. © 1999 Academic Press
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INTRODUCTION

of greatest diffusion. The major, intermediate, and minor axe
are mutually orthogonal.

A set of eigenvalues of a diffusion tensor containsi,, As.
These eigenvalues are expressed in square millimeters f
second. They can be ordered by decreasing magnitudg.as
= A = Amin = 0. The set of ordered eigenvalues can be
considered a point in a three dimensional space denoted |

A,

/\max(i)
Aini) |, [1]
/\min(i)

Ai) =

where i ranges from 1 ton, the total number of sets of
eigenvalues.

Ordered eigenvalue space is composed of all possible valu
of the ordered eigenvalues. This space has the shape of
inverted triangular pyramid with the apex at the origin. The
planes that form the boundaries ag, = 0, A, = Ay, and
Aint = )\max-

In this investigation it will be demonstrated that the sets o
eigenvaluesA(i), from regions of brain parenchyma lie along
aline in ordered eigenvalue space. This line will be defined an
characterized by the use of a coordinate system translation a
rotation. The new coordinate system is a natural system fc
describing the eigenvalues. It allows convenient parameters f

Diffusion in biological tissues can be measured by magnefig.scribing position along the line and deviations from the line

resonance diffusion tensor imaging~@). Isotropic diffusion  Thjs new parameterization may prove to be useful for detectin

refers to the situation where the diffusivity is the same in all\4 characterizing abnormal values of diffusion in tissues.
directions in space and can be described by a simple scalar

guantity. Diffusion in the gray matter of the brain has been
found to be relatively isotropic. However, in general, brain
diffusion is not isotropic. Diffusion which varies with direction The Mathematica software package (Wolfram Researcl
is termed anisotropic. The complex nature of anisotropic difac., Champaign, IL) was used on an Apple Quadra compute
fusion has been described by a diffusion tensor which contaif#gple Computer Inc., Cupertino, CA) to perform the mathe-
information about the magnitude of diffusion in different dimatics and analyze the data in this manuscript.

rections. This information is often depicted as a diffusion

ellipsoid oriented in space with the major axis in the directioRverview

MATERIALS AND METHODS

The coordinate system described above containiiapwill

! Fax: (314) 362-4886; E-mail: bahn@mirlink.wustl.edu. be referred to as the “original ordered eigenvalue coordina
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system.” A new coordinate system spanning ordered eigen- A'(i) = R(A() — ). [6]
value space will be derived below.

By translocation and rotation of the original coordinate The axes in the transformed coordinate system are referr
system, one of the new axes, thaxis, will be the line which {5 a5r, s, andt.
best describes the linear trend in the valdé} from the brain
parenchyma.

s(i)
Determination of the Line Which Best Fits thé) A(i) = { ;EII)) ] . (7]
The data pointa\(i) were projected onto a plane in original
eigenvalue space. The variance of the projected points Wasg\' (i) can be written in a cylindrical coordinate systes,§,

determined (the total of the squared distances from the cenj§r 5 is the distance of a point to thseaxis andy is the angle
of mass). Then, by use of an iterative method, the pl&e, from thet axis in ther—t plane.r, s, t, ands are expressed in
which minimized the variance, was identified. square millimeters per secondl,in degrees.
LetL(s) be the line which is orthogonal ® and which also  The goodness of fit of the line to the data was measured k
passes through the center of mass of the points projected o9 coefficient of determination?, with 0 < r2 < 1 (7). It
P. Then L(s) best describes the linear trend of the braigguals the sum of the squared distances from the predict
parenchymal pointa(i). values to the mean of the data points divided by the sum of tt
Determination of the Origin of the New Coordinate System zgzzgend g;sizzcszrﬁ;g; hii dt?nf zgltr;s;girt:: I:/v?i?\mci]rf be
L(s) crosses the boundary of the original ordered eigenvalaecounted for by the fitted line.
space at a poing, which will be the origin of the new
coordinate system. The poirg, was found to be in the plane Brain Eigenvalues Used in the Derivation

Amax = Ao Mean eigenvalues from regions of interest drawn in variou

brain regions are available in the literature. In the preser

investigation, eigenvalues from regions of interest in huma
Let u, be the unit vector orthogonal to the plaReThen the brain @) and monkey brain3) were combined and fitted as

line described above. The eight eigenvalues from monkey bra

parenchyma represent mean values derived from pooled r

L(s)=q+u,s [2] gions of interest in the right and left hemispheres of six

animals. The eight eigenvalues from human brain are similarl

best describes the linear trendiifi). u, is the unit basis vector derived from eight healthy volunteers. The lines describing th
for the news axis. linear relationship between the eigenvalues from each speci
Two other unit vectors,, andus, can be arbitrarily defined were fitted separately. The human brain eigenvalue from th
to be orthogonal tai; and also mutually orthogonali{ uses frontal cortex was found to deviate significantly from the line

Translation and Rotation of the Coordinate System

the Gram—Schmidt orthogonalization process), fitted to the other human brain eigenvalues. Using the
outlier analysis procedure) the probability that this point is
u, = (q — (us - q)uy)/Norm(q — (U - q)uy), [3] @anoutlier exceeds 0.98. Therefore, this point was rejected fro
use in the analysis. In the original articlg) (Pierpaoliet al.
Us = Uy X Uy, [4] also considered the frontal cortex point to be an outlier an

suggested that it might be due to partial volume contaminatio
where- denotes the dot or inner produet, denotes the cross py cerebral spinal fluid.

product, and “Norm” is the square root of the sum of squared

elements of the vector. THeaxis was chosen as, in Eq. [3] RESULTS
such that it was along the line orthogonal kgs) which
intersects the origin. Table 1 shows highly linear trends witfh values near 1 for
The matrixR * is defined as the best line fit to the monkey data (monkey fit-monkey datz
and for the best fit line to the human data (human fit—huma
R™ = [u; u, ug]. [5] data).

Table 1 also shows the value when the best fitting line to
Then the 3 3 unitary rotation matriR (the inverse oR™*)  the monkey is applied to the human data (monkey fit—huma
transforms the original coordinate system into the new tramgata), and vice versa. Atest was performed to determine
formed coordinate system whether there was significant difference in how each line fit th
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TABLE 1 DISCUSSION
r? Values from Various Line Fits to the Data

Many measures have been used to convert the tensor, whi

Monkey data Human data Combined datayescribes complex diffusion in a volume of tissue, into a set ¢
Monkey fit 0.99 0.96 megnlngful scalar qugntltles. Sca!ar representat!on of son
Human fit 0.99 0.97 attribute of the tensor is more readily comprehensible than tt
Overall fit 0.97 full tensor itself and can be easily displayed as a parametr

image. These measures have described diffusion magnituc
anisotropy, and skewnes$~6, 10. Most of these measures

data sets. The value af for human fit=human data wasdefine planes or surfaces of isometric values in three dime
compared ta? for the monkey fit-human data. Using thtest Sional eigenvalue space. Table 1 demonstratesstican be
described by9) the values of > were not significantly differ- considered an anlsotropy measure because the magnltude
ent (p > 95%). In thecomparison of monkey fit-monkey dataParametes correlates with the expected degree of anisotrop
to human fit-monkey data it was slightly less likely that th# different anatomic regions. However, the present derivatio
two values ofr > were identical p > 85%). This is due to the 1S much more than just the proposal of another anisotrop
extremely good fit of the monkey line to the monkey data ( Mmeasure. It is a model of the relationship between brain eic
= 0.99). These results demonstrate that both sets of eiggiflvalues in normal tissue. _ .
values are well described by either regression line. Therefore!f the eigenvalues of the diffusion tensor associated with eac
the eigenvalues from both monkey brain and human brain wéfaging voxel had magnitudes which were randomly distributec
combined. A best fit line for the combined data sets wdlen the ordered eigenvalue plot of the eigenvalues from all tf
determined. This line was found to also have a significai@xels would have points distributed throughout the space.

linear trend (overall fit—combined data in Table 1). there were a single constraint on the allowable eigenvalues, su
Based on the combined data set, the rotation matrix f8f constant total isotropic diffusion, then the points in an ordere
coordinate system transformation is eigenvalue plot would fall on a plane. However, the preser
investigation demonstrates that the points in an ordered eige

0.86 -0.34 —0.38 value plot fall along a line. This suggests that there are at least tv

R=| 0.50 0.69 0.52]| (] constraints on the values of the three eigenvalues for each vox

0.083 —-0.64 0.77 A possible explanation for this observed linear relationship relate

the observation to the tissue microstructure. On a microscop

Figures la—c show plots of the original eigenvalue poin@vel’ brain is composed of fibers with a preferred direction o

and the best fitting line (thgaxis). Inspection of the deviations diffusion along the fiber (rather than across it). Some tissues a

of the points from thes axis demonstrates a small higher Ordetl‘.omposed of fibersiwhich are highly para!lel, such as the corp
trend in the residuals. However, the linear transformation alqallosum. Other brain structures, some white matter structures a

most of the gray matter structures, have a more dispersed disi
bution of microfiber orientations. It is likely that the linear rela-
tionship of the eigenvalues observed in an ordered eigenvalue p
is related to a combination of (1) conservation of total isotropit
diffusion and (2) the degree of orientational dispersion of th
microfibers within each voxel, perhaps with similar microscopic
diffusion within the region of each individual microfiber. The
parameter s is likely related to the degree of microfiber dispersic
X 107% mm?/s. [9] with the voxel. A future direction for research would be to
construct a mathematical model based on these assumptions
Values of the parametsrfor different brain regions are tabu-assess whether it predicts the observed linear eigenvalue relati
lated in Table 2. These values are based on the best fit to shép.
combined set of eigenvalues. When listed in ascending order of The monkey and human brain eigenvalue data sets we
the anatomic regions are ordered according to expected degreeonfibined because they were derived from the same laboratc
anisotropy. It is noteworthy that similar anatomic regions frowith similar methodologies. However, there may have bee
human and monkey data (i.e., the corpus callosum) have simgabtle differences in technique between the two studies b
values ofs. The great similarity ins values for brain regions cause these two investigations were not necessarily undertak
between species suggests that the method is robust. Differerfoegshe purpose of this comparison. Therefore, future studie
between individuals within a species are expected to be much ledth human subjects, monkeys, and other animals, with caref
than those between species. attention to the maintenance of identical procedures, are ne

rotation used in this investigation cannot incorporate the
higher order terms.
In the original coordinate system, the equation lf¢s) is

Amax 734 0.8&
L(s)={ Ain ](s):{ 734]+[ —0.34%

Amin 532 —0.38
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FIG. 1. (a) A plot of the projection of the eigenvalue plots onto Mg-A.x plane. The projection of the best fit line, fitted to the combined monkey an
human data set, is also shown. The points from the monkey brain (open squares) and human brain (filled circles) are plotted with different syughols ¢
the combined set of eigenvalues was used when determining the best fitting line. (b) A plot of the projection of the eigenvalue plots.griq.tipéane. The
projection of the best fit line is also shown. (c) A plot of the projection of the eigenvalue plots omg; k.., plane. The projection of the best fit line is also
shown.

essary to verify that the diffusion eigenvalues from multiple The model identified the human frontal cortex eigenvalue

species lie along the same line in ordered eigenvalue spacg) as outlier values. The same conclusion was reached in tl
Since normal tissues lie alorids), deviation ofA(i) from original article. The ability to differentiate accurate diffusion

the line might denote pathology. Pathology could also heEgenvalues from outliers strengthens confidence in the mod

manifested by movement along the line in such a manner tlzetd its ability to identify pathology.

the value of parametes does not correspond to the normal If it is verified that the proposed model represents diffusior

value for that anatomic region. in normal brain tissue, projecting the diffusion eigenvalue:
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TABLE 2 gested finding because it could be inaccurate due to bi

Brain Regions and Their Corresponding Parameter s introduced by ordering the eigenvalues.
A bias is introduced into the eigenvalues by ordering. Thit
bias is most severe for nearly isotropic sets of eigenvalues al
least severe for very anisotropic sets of eigenvalues. The lir

Region Species Parameter

Caudate nucleus Human 59 ) e
Putamen Monkey 130 fitted to the data reflects the presence of this bias. Perhaps
Caudate Monkey 143 less biased estimation of the linear trend can be obtained |
Parietal cortex | Monkey 206 constructing a line which passes through only two points. On
Centrum semiovale Human 339 hoint is assumed to be exactly isotropic with the eigenvalue
Subcortical Wt matter Monkey 346 . .
U fibers Human seg  €qual to the average, from five gray matter regions (caudate,
Posterior limb IC Human 751 caudate, putamen, frontal cortex, and parietal cortex). Th
Optic radiation Human 827  other point is very anisotropic with coordinates equal to the
Anterior limb IC 'V'O”klfy 8474 mean of five white matter tracts (splenium, corpus callosun
Posterior limb IC Monkey 876~ optic tract, posterior limb of internal capsule, and pyramida
Corpus callosum Monkey 1073 . . « . -
Splenium CC Human 1131  tract). Using these values, an estimate of the “unbiased” line
Pyramidal tract Human 1143
Optic tract Monkey 1247 701 0.8%
— — -6 2
Note.IC = internal capsule, CG= corpus callosum, Wt white. s has L unbiased$) = 701 1+ 82? X107" mms.

units X 10°° mm?/s. 701 —0.46

[11]

CONCLUSIONS

onto the line could be used as a method of reducing measure- . S N .
o : In the present investigation the brain diffusion eigenvalu
ment noise in normal tissues.

parameters\(i) from both monkey and human are shown to
demonstrate significant linear trends. Moreover, this stud
gﬁggests that the linear trend found in both species can |
described by the same line. This line describing the linear tren
is a model for normal brain diffusion. It can be applied to
Amean= trace/3= (Amin + Aing + Amaid/3. [10] measurement noise reduction. It can serve as an anisotro
measure. It may be useful for the detection of pathology i

By use of the values from Eq. [9\...., Was calculated for brain tissues. The observed linear relationship among the di
the values ofs (0-1300x 10°° mm?/s in Table 2)) corre- fusion eigenvalues in the normal primate brain might be relate
sponding to the published normal tissue eigenvalues. Thisa combination of (1) the constant value observed for tote
indicates that the model line lies nearly parallel to an isometiigotropic diffusion throughout the brain, and (2) the degree ¢
surface of the parametey,.., The value ofA,..,for the largest dispersion of the orientation of the microstructural element
svalue in the brain regions testesd=€ 1247) isonly 8% larger within each voxel.
than thel ... for the smallest (s = 59), 670X 10°° mm’/s
versus 726x 10°° mm?/s. The relatively constant,,,, values ACKNOWLEDGMENTS
agree with published observatior @).
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